Цифровой звук

         

Бит: мифы и реальность


Идём дальше. Второй излюбленный рекламный параметр Creative ? это 24 бит. Всем понятно, что 16-битный режим видеокарты хуже, чем 24(32)-битный. 16-битный ЦПУ хуже, чем 32-битный. Поэтому здесь рекламный отдел играет на ассоциациях с другими областями и заманивает понятным пользователю компьютера вещами ? разрядностью представления данных. Однако, если с видео ситуация более простая, так как человеческий глаз начинает видеть артефакты от насыщения полутонов, с аудио этого не происходит. Главным образом потому, что динамический диапазон 16-битного звука подходит вплотную к порогу чувствительности слуха. А если ещё и применить нойз-шейпинг с фильтрацией частот выше 20 кГц, то сигнал, оставаясь в 16-битной сетке, субъективно будет звучать как 18 битный. Учитывая то, что эффективно 24-битных звуковых ЦАПов до сих пор не создано, вполне можно понять живучесть CD-DA и 16-битного звука.

Однако, такое объяснение вряд-ли на руку рекламному отделу, продвигающему очередную "24-битную новинку нового поколения crystal clear sound". И тут на помощь приходит распространённое среди обывателя мнение о том, что цифровой звук представляет из себя "лесенку"! Как мило, вы только полюбуйтесь:

  • Начнём разоблачение с того, что при PCM-кодировании цифровой сигнал не существует в промежутках между отсчётами. Он там просто не определён, учите математику. Вместо "лесенки" должны рисоваться точки. В конце-концов, пространство у нас дискретное, а не непрерывное.
  • Вашу мать. У нарисованной "лестницы" спектр бесконечен! А итоговая линия по отсчётам на выходе ЦАПа имеет конечный спектр и зависит от интерполяционного фильтра (к тому же в современных ЦАПах сигма-дельта модулятор и формирователь псевдо-случайного шума). Если и сравнивать исходный сигнал, то именно с конечным результатом после ЦАПа, а не с промежуточным, некорректно совмещая на графике два кардинально отличающихся пространства.
  • Далее, на картинке обычно рисуют 3-битный сигнал (8 градаций амплитуды) vs. 4-битный (16 градаций амплитуды).
    Отлично! Верим, что различаются.

  • Частоты семплирования (расстояния между соседними "ступеньками") различаются в 5-6 раз ? тоже "нормально", хотя между 44,1 кГц и 96 кГц разница в 2 с небольшим раза. Да! Ура, 96 кГц лучше чем 22 кГц.

  • Исходный сигнал почему-то всегда одиночный синус. Хотя, кроме как в тестах, он не используется. А если подать розовый шум, а если меандр?

  • Реальный сигнал, даже если это синус, всегда содержит в себе шум. Возникает вопрос: если при фильтрации в АЦП мы заменяем реальную кривую некоторой промежуточной гладкой кривой, то стоит ли переживать, что при оцифровки этого основного, слышимого сигнала мы только его и сохраним, а при обратном преобразовании подмешаем другой неслышимый шум на выходе? Ведь теряющаяся информация, если она плохо передаётся при оцифровке с частотой 44,1 кГц, просто напросто лежит за пределами половины частоты дискретизации. А это >22 кГц, то есть заведомо выше слышимого диапазона.

  • А где же тогда увидеть реальные картинки, спросите вы? Да хотя бы в программе CoolEdit. Эта программа примечательна тем, что вместо тупых "лесенок", как, к примеру, в SoundForge, здесь рисуются и семплы и работа идеального интерполирующего фильтра. Возмём синусоиду 10 кГц и посмотрим:





    Разница есть, но не выглядит такой уж впечатляющей. Но зато это полностью согласуется со слуховыми ощущениями. Увы, вместо революции ? лишь эволюция. Однако, в отличие от 16/44, у высоких форматов потенциал ещё до конца не исчерпан, что внушает определённый оптимизм. Также записи в высоком разрешении лучше сохраняют качество при компрессии на стадиях сведения и мастеринга. По крайней мере отличия в результате слышны на слух даже на недорогой звуковоспроизводящей аппаратуре (даже на такой, как компьютерные деревянные стереоколонки, ценой от $50).
    Но, вернёмся к нашим картам.

    Содержание раздела